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Catchability is an important parameter in many stock assessment models because it relates an index of abundance to
stock size. We review the theory and evidence for time-varying catchability, its effects on stock assessment estimates, and
methods to include time-varying catchability in stock assessments. Numerous studies provide strong evidence that time-
varying catchability is common in most fisheries and many fishery-independent surveys and can be caused by anthropogenic,
environmental, biological, and management processes. Trends in catchability over time can cause biased estimates of stock
size and fishing mortality rates in stock assessment models that do not compensate for them. Methods that use descriptive
and functional relationships have been developed to incorporate time-varying catchability in stock assessment models. We
recommend that the default assumption for stock assessments should be that catchability varies over time and that multiple
methods of including time-varying catchability should be applied. Additional studies are needed to determine relative
performance of alternative methods and to develop methods for selecting among models.
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INTRODUCTION

Catch per unit effort (CPUE) from fishery-dependent or -
independent sources is commonly assumed to be proportional
to population size, CPUE ∝ N , and used as an index of abun-
dance in many stock assessments (Quinn and Deriso, 1999).
Catchability, the proportionality constant between an index of
abundance and population size, is an important parameter in
many stock assessment models because it relates an index of
abundance to stock size (Hilborn and Walters, 1992; Arreguı́n-
Sánchez, 1996; Quinn and Deriso, 1999). When fishing occurs
over a short period (i.e., Ricker (1940) Type I fishery),

C

E
= qN,
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where q is catchability, C is catch, and E is effort (Ricker, 1975).
In this case, catchability is the proportion of the population
caught with one unit of effort. Effort can have many meanings
depending on the characteristics of the fishery. This standard
usage implicitly assumes that catchability is either constant over
time or that it varies around a constant mean (Quinn and Deriso,
1999).

Catchability can also be defined as the proportionality con-
stant between fishing effort and fishing mortality. Based on the
Baranov catch equation, C = FN̄ , for continuous constant fish-
ing and natural mortality over a year (i.e., Ricker (1940) Type II
fishery),

C

E
= qN̄,

where N̄ = (1−e−Z )
Z

N , N is abundance at the start of the year,
F is the instantaneous fishing mortality rate, Z is the instan-
taneous total mortality rate, and N̄ is the time-average abun-
dance over the year (Ricker, 1975). An alternative definition
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8 M. J. WILBERG ET AL.

for catchability as the constant of proportionality between ef-
fort and fishing mortality is C = qEN. This equation applies
when fishing occurs during a period when natural mortality is
negligible and changes the units of fishing mortality to per fish-
ing season (Hilborn and Walters, 1992). Such definitions have
a long history and may be traced as far back as Baranov in
1916 (Radovich, 1976). Indeed, catchability has been described
by some as the most important parameter in stock assessment
models (Arreguı́n-Sánchez, 1996) and is estimated in almost all
standard assessment models that estimate absolute abundance
(Quinn and Deriso, 1999).

Time-varying catchability is common and should be expected
in most fisheries (Winters and Wheeler, 1985) and in many
fishery-independent surveys (Walters and Martell, 2004). An-
thropogenic, environmental, biological, and management pro-
cesses may drive changes in catchability over time (Hannesson,
1983; Robins et al., 1998; Skjold et al., 1996). Indeed, there are
numerous studies which provide strong evidence that catchabil-
ity does vary over time (Table 1). CPUE is often proportional to
local density. Thus, the local area relative to the area of the en-
tire stock must be considered. This localized effect of the CPUE
relationship with density is often called availability (Widrig,
1954; Ricker, 1975).

If time-varying catchability is not allowed for, stock assess-
ments may produce biased estimates (Pope and Shepherd, 1985;
NRC, 1998; Wilberg and Bence, 2006) and retrospective pat-
terns as a result (Mohn, 1999). Increases in catchability over
time, or when stock sizes are low, can lead analysts to produce
overly optimistic estimates of stock size and stock productivity
if the change in catchability is not recognized; the resulting over-
fishing can cause stock collapse (Patterson et al., 1993; Pitcher,
1995; Shertzer and Prager, 2007). Simulation studies indicate
that time-varying catchability can cause biomass to be overesti-
mated by more than 100% and fishing mortality to be underesti-
mated by a similar amount (Pope and Shepherd, 1985; Patterson
and Kirkwood, 1995; Wilberg and Bence, 2006). The positive
bias in biomass in these studies arises because data sets were
simulated with increasing trends in catchability. The direction
and amount of bias will depend on the pattern and magnitude of
catchability changes, amount of fishing mortality, amount and
quality of other data, and the type of estimation model (Pope
and Shepherd, 1985; Patterson and Kirkwood, 1995; Wilberg
and Bence, 2006). Given the critical role that catchability plays
in stock assessments, and the fact that catchability likely varies
over time, robust methods to incorporate time-varying catcha-
bility must be developed, evaluated as to their performance, and
regularly applied.

A number of methods have been developed to incorporate
time-varying catchability into stock assessments. Despite this,
most assessments still use methods that perform poorly when
catchability has a trend over time, and relatively few studies
have compared the performance of alternative methods when
catchability has changed over time (e.g., Pope and Shepherd,
1985; NRC, 1998; Patterson and Kirkwood, 1995; Wilberg and
Bence, 2006; Chen et al., 2008).

We are at a crossroads regarding this issue. Fisheries scien-
tists, and most importantly, stock assessment practitioners must
understand that (1) ecological theory and a large body of evi-
dence suggests that time-varying catchability is a common phe-
nomenon, (2) failing to incorporate time-varying catchability
into stock assessments may produce biased results, (3) multiple
methods to incorporate time-varying catchability exist, and (4)
additional studies are needed to compare the performance of
alternate methods and to develop new and improved methods
to incorporate time-varying catchability. The purpose of this ar-
ticle is to thoroughly review potential causes of and evidence
for time-varying catchability for individual stocks and provide
the information required to bring today’s fisheries and stock
assessment scientists current with regards to this issue.

CAUSES OF TIME-VARYING CATCHABILITY

Catchability does not represent a single process, but rather
a complex set of interactions between fish and fishers (Walters
and Martell, 2004). Many causes of time-varying catchability
have been identified, and time-varying catchability has been
documented in a wide range of fisheries and research surveys,
spanning commercial and recreational fisheries, freshwater and
marine systems, pelagic and demersal species, fisheries for fin-
fish and shellfish, and research surveys that use passive or active
gears (Table 1). In some cases, catchability may change with
abundance or the area inhabited by a stock (e.g., Peterman and
Steer, 1981; Winters and Wheeler, 1985; Harley et al., 2001),
environmental effects (e.g., Green, 1967; Evans et al., 1997;
Ziegler et al., 2003), due to changes in fisher behavior or gear
(e.g., Hilborn and Walters, 1992), or because of changes in
management regulations (e.g., Muller et al., 1997; van Oosten-
brugge et al., 2008; Oliveira et al., 2009). Changes in catchability
can affect both fishery-dependent and fishery-independent data
sources. Catchability change is especially likely when the fish-
ery or survey from which an index of abundance is derived does
not cover the full area of the stock (Walters, 2003), although
a variety of other causes may also contribute (Pennington and
Godø, 1995; Godø et al., 1999).

Fishing Technology, Behavior, or Regulation Changes

It is well known that changes in fishing practices and tech-
nology can lead to trends in catchability over time (Garrod,
1964; Gulland, 1964; Kimura, 1981; Hilborn and Walters, 1992;
Squires, 1992). Additionally, changes in regulations (Muller
et al., 1997), retention of skilled fishermen over time or across
generations (Tingley et al., 2005), and learning by fishermen
(Walters and Maguire, 1996; Salthaug, 2001) can have sub-
stantial effects on catchability. Increasing trends of 2–7% per
year in fishing efficiency have been found in economic analyses
after compensating for other factors (Hannesson, 1983; Skjold
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INCORPORATING TIME-VARYING CATCHABILITY INTO POPULATION DYNAMIC STOCK ASSESSMENT MODELS 9

Table 1 Studies documenting time-varying catchability

Authors Species (scientific name); location Category

Time-varying methods
Robins et al. (1998) Australian tiger prawn (Penaeus esculentus) C, D, Sh, M
Ye and Mohammed (1999) Green tiger prawn (Penaeus semisulcatus); Kuwait C, D, Sh, M

Density dependence
Abramson and Tomlinson (1972) Ocean shrimp (Pandulus jordani); California coast C, D, Sh, M
Schaaf and Huntsman (1972) Atlantic Menhaden (Brevoortia tyrannus); U.S. Atlantic coast C, P, F, M
Schaaf (1975) Atlantic Menhaden (Brevoortia tyrannus); U.S. Atlantic coast C, P, F, M
Pope and Garrod (1975) Cod (Gadus morhua); Barents Sea and north Atlantic C, D, F, M
MacCall (1976) Pacific sardine (Sardinops sagax); 1937–1944 Eastern Pacific Ocean C, P, F, M
Ulltang (1976) Atlanto-Scandinavian herring (Clupea harengus harengus); Norway C, P, F, M
Peterman (1980) Chinook salmon (Oncorhynchus tshawytscha); Oregon and British Columbia A, An, F
Schaaf (1980) Atlantic Menhaden (Brevoortia tyrannus); U.S. Atlantic coast C, P, F, M
Houghton and Flatman (1981) Cod, (Gadus mohua); west-central North Sea C, D, F, M
Peterman and Steer (1981) Chinook salmon (Oncorhynchus tshawytscha); Oregon and British Columbia R, An, F
Henderson et al. (1983) Lake whitefish (Coregonus clupeaformis); Lake Huron C, D, F, Fr
Crecco and Savoy (1985) American shad (Alosa saidissima); Connecticut River C, An, F
Winters and Wheeler (1985) Atlantic herring (Clupea harengus harengus); C, P, F, M
Ralston et al. (1986) Bottom fishes (lutjanids, serranids, and carangids); Johnston Atoll R, D, F, M
Richards and Schnute (1986) Quillback rockfish (Sebastes malinger); Strait of Georgia, British Columbia R, D, F, M
Deriso and Parma (1987) Snappers (Pristipomoides zonatus, P. auricilla, and Etelis carbunculus); Mariana Islands, Pacific Ocean S, D, F, M
Richards (1987) Pacific rockfishes (Sebastes spp.); Strait of Georgia, British Columbia R, D, F, M
Csirke (1989) Peruvian anchoveta (Engraulis ringens); Peru C, P, F, M
Crecco and Overholtz (1990) Georges Bank haddock (Melanogrammus aeglefinus); Georges Bank C, D, F, M
Gordoa and Hightower (1991) Cape Hake (Merluccius capensis); coasts of Angola and Namibia C, P, F, M
Rose and Leggett (1991) Atlantic cod (Gadus morhua); Northwest Atlantic Ocean C, D, F, M
Shardlow (1993) Pacific salmon (Oncorynchus spp.); Strait of Georgia, British Columbia R, An, F
Hutchings and Meyers (1994) Atlantic cod (Gadus morhua); Northwest Atlantic Ocean C, D, F, M
Swain et al. (1994) Atlantic cod (Gadus morjua); Gulf of St. Lawrence S, D, F, M
Hannah (1995) Ocean shrimp (Pandalus jordani); California C, D, Sh, M
Shuter et al. (1998) Lake trout (Salvelinus namaycush); Ontario lakes R, D, F, Fr
Hansen et al. (1998) Lake trout (Salvelinus namaycush); Lake Superior S, D, F, Fr
Godø et al. (1999) Cod (Gadus morhua), haddock (Melanogrammus aeglefinis), and American plaice (Hippoglossoides

platessoides); Barents Sea and northwest Atlantic
C, D, F, M

Rose and Kulka (1999) Northern cod (Gadus morhua); Northwest Atlantic Ocean C, D, F, M
Hansen et al. (2000) Walleye (Sander vitreus); Northern Wisconsin lakes C, R, D, F, Fr
Harley et al. (2001) ICES cod, flatfish, and gadiformes C, D, F, M
Pérez and Defeo (2003) Nylon shrimp (Heterocarpus reedi); Chilean coast C, D, Sh, M
Rodgers et al. (2003) Walleye (Sander vitreus); Northern Wisconsin lakes S, D, F, Fr
Hansen et al. (2004) Walleye (Sander vitreus); Northern Wisconsin lakes S, D, F, Fr
Pérez and Chávez (2004) Surf clam (Mesodesma donacium); Coquimbo Bay, Chile A, D, Sh, M
Hansen et al. (2005) Walleye (Sander vitreus); Northern Wisconsin lakes C, R, D, F, Fr
Jiao et al. (2006) Yellow perch (Perca flavescens); Lake Erie R, C, D, F, Fr
Zhou et al. (2007) Banana prawn (Penaeus merguiensis); Gulf of Carpentaria, Australia C, D, Sh, M
Rindorf and Andersen (2008) North Sea cod (Gadus morhua); North Sea C, D, F, M

Effort dependence
Fonteneau and Richard (2003) Tunas and billfishes; Indian Ocean C, P, F, M
Salthaug and Aanes (2003) Northeast Arctic cod (Gadus morhua), northeast Arctic haddock (Melanogrammus aeglefinus) and saithe

(Pollachius virens)
C, D, F, M

van Oostenbrugge et al. (2008) Plaice and sole; Dutch beam trawl fishery C, D, F, M
Environmental methods

McLeese and Wilder (1958) American lobster (Homarus americanus); northwestern Atlantic R, D, Sh, M
Paloheimo (1963) American lobster (Homarus americanus); northwestern Atlantic C, D, Sh, M
Green (1967) Yellowfin tuna (Thunnus albacares) and skipjack tuna (Euthynnus pelamis); Eastern Pacific Ocean C, P, F, M
Rose and Leggett (1989) Atlantic cod (Gadus morhua); northern Gulf of St. Lawrence C, D, F, M
Evans et al. (1997) Banana prawns (Panaeus merguiensis); Gulf of Papua C, D, Sh, M
Swain et al. (2000) Atlantic cod (Gadus morhua); Gulf of St. Lawrence C, P, F, M
Ziegler et al. (2003) Southern rock lobster (Janus edwardsii); Tasmania, 1992–1999 C, D, Sh, M

Multiple causes
Bannerot and Austin (1983) Yellowtail snapper (Ocyurus chrysurus); Florida R, D, F, M
Hannesson (1983) Lofoten cod (Gadus morhua) C, D, F, M

(Continued on next page)
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10 M. J. WILBERG ET AL.

Table 1 Studies documenting time-varying catchability (Continued)

Authors Species (scientific name); location Category

Angelsen and Olsen (1987) Lofoten cod (Gadus morhua) C, D, F, M
Squires (1992) U.S. Pacific coast multi-species trawl fishery C, D, F, M
Patterson et al. (1993) Chub mackerel (Scomber japonicus); eastern central Pacific C, P, F, M
Skjold et al. (1996) Norwegian cod (Gadus morhua) C, D, F, M
McInerny and Cross (2000) Largemouth bass (Micropterus salmoides); Minnesota lakes S, D, F, Fr
Hannesson et al. (2008) Lofoten cod (Gadus morhua) C, D, F, M
Ye and Dennis (2009) Torres Straight rock lobster (Panulirus ornatus) C, D, Sh, M

Categories represent fishery or stock characteristics: C—commercial fishery; R—Recreational fishery; S—research survey; A—artisanal fishery; P—pelagic
species; D—demersal species, An—anadramous species; F—finfish; Sh—shellfish; M—marine; Fr—freshwater.

et al., 1996; Robins et al., 1998; Hannesson, 2007). Such
changes include bigger motors and boats, which allow new
fish aggregations to be exploited, as well as sonar and GPS
plotters, which allow fishermen to accurately target produc-
tive habitats and aggregations (Hannesson, 1983; Robins et al.,
1998; Skjold et al., 1996). Recent assessment reports for the
U.S. Gulf of Mexico and south Atlantic fisheries management
regions have hypothesized that navigational aids (i.e., global
positioning systems (GPS) and GPS plotters), motor size, and
captain experience may have caused a 35% increase in catcha-
bility since the 1980s (Southeast Data Assessment and Review
(SEDAR), 2006). Increased deployment of fish aggregation de-
vices, as well as changes in bottom habitat can cause changes
in distribution and fish densities with accompanying changes in
catchability (Arreguı́n-Sánchez, 1996). Fishermen may change
their targeting preferences to maximize profits as market prices,
fishing costs, and CPUE change (Hutchings and Myers, 1994;
Salthaug and Aanes, 2003). These economic changes may also
drive changes in the dynamics of exploited fish populations that
can lead to increases or decreases in catchability (Hannesson,
1983).

Management and regulations can have a significant effect
on catchability, and often managers will implement regulations
with the intent of reducing catchability (Oliveira et al., 2009).
Changes in size, bag, or trip limits can cause sudden changes
in catchability by redefining acceptable catch, forcing fisher-
men to discard (and hence not record) a portion of previously
retained catch (Gillis et al., 1995; Fare et al., 2006; SEDAR,

Table 2 Variable names

Variable name Definition

N Total biomass
SSB Spawning stock biomass
C Catch
CPUE Catch-per-unit-effort
D Local density
HB Harvestable biomass
R Spatial patchiness of effort
SE Spatial extent of effort
SA Stock area
t Time in years
S Time in seasonal units
E Nominal fishing effort

2006). Temporal and spatial regulations may affect catchability
by redistributing fishermen away from optimal times or fishing
grounds or towards spatial boundaries where fish densities are
increased (McGilliard and Hilborn, 2008). Seasonal or spatial
closures can also affect catchability because catchability can
change seasonally (Skjold et al., 1996; Ye and Mohammed,
1999) and differ among areas (Walters, 2003). Finally, fishery
managers may choose to regulate or promote changes in fish-
ing gears used by commercial or recreational fishermen. Such
changes include the shift from J-hooks to circle-hooks, which
has caused increases in CPUE for billfish, pelagic longlines, and
Gulf of Mexico longlines (Hoey, 1996; Falterman and Graves,
2002; Prince et al., 2002).

Fisher behavior, in terms of where and when fishermen
choose to fish, can cause catchability to vary over time (Gillis
and Peterman, 1998). Additional units of effort added to a fish-
ery can have lower catchability than previous units of effort (van
Oostenbrugge et al., 2008), which we term effort dependent
catchability. This phenomenon can be caused by gear competi-
tion, selection of suboptimal fishing locations after better ones
are fully fished, or localized depletion in areas that are heavily
fished (Ricker, 1975). Effort dependent catchability has been
found in several fisheries for a range of species (e.g., Muller
et al., 1997, Fonteneau and Richard, 2003; van Oostenbrugge
et al., 2008).

Density Dependence

Paloheimo and Dickie (1964) suggested that catchability
would be density dependent when a stock is contagiously dis-
tributed and searching by fishermen is non-random, although
gear saturation can also lead to this phenomenon (Ricker,
1975; Richards and Schnute, 1986). Density-dependent catch-
ability has been reviewed in Winters and Wheeler (1985) and
Arreguı́n-Sánchez (1996) and has been extensively documented
in a variety of species and regions (Table 1). The typical pat-
tern for density-dependent catchability is that catchability in-
creases as abundance declines, thus causing fishery CPUE to
be “hyperstable,” where CPUE remains high despite decreases
in abundance (Figure 1; Hilborn and Walters, 1992). Hyper-
stable CPUE in combination with a stock assessment model that
does not account for it can cause underestimation of abundance
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Abundance
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E

Hyperstability

Hyperdepletion

Figure 1 Potential patterns of density-dependent catchability on catch per
unit effort (CPUE). Reproduced from Hilborn and Walters (1992) with kind
permission of Springer Science and Business Media.

changes and lead to misinterpretation of stock collapse or re-
covery (NRC, 1998). It may also lead to catchability-led stock
collapse, where density-dependent catchability leads to dise-
quilibrium between fisher and stock behavior in a fishery where
total catch is not controlled (Pitcher, 1995; Mackinson et al.,
1997).

The typical model used for density-dependent catchability is
a power function of density (Paloheimo and Dickie, 1964; Ta-
ble 2; Table 3; Eq. 3.1). If the exponent parameter is greater than
zero, catchability exhibits hyperdepletion where CPUE changes
more rapidly than stock size; if the exponent parameter is zero,
catchability is constant and CPUE is proportional to stock size;
if the exponent is negative, CPUE will show hyperstability and
CPUE decreases less rapidly than stock size (Figure 1). Many

generalizations have also been proposed, including effort and
density dependence (Eq. 3.2; Hannesson, 1983), spatial density
dependence (Eq. 3.3; Salthaug and Aanes, 2003), or generalized
density dependence to accommodate refuges (Eq. 3.4; Richards
and Schnute, 1986).

Much of density-dependent catchability can be thought of
as an overlap between fishermen (or scientists) and the stock.
Because CPUE is often an index of local density, it reflects
abundance where fishing takes place. Thus, how the distribu-
tion of a stock changes spatially as its abundance changes can
affect catchability in fisheries and surveys. In order for CPUE
from a restricted part of a stock’s range to be a reliable index
of abundance, the stock must decrease in the same proportion
across the entire range in which it is fished (Figure 2). If fishing
(or a research survey) only takes place in a small part of the
range of a stock and stock density changes in some locations are
not proportional to overall abundance, CPUE can exhibit hyper-
stability or hyperdepletion (Fréon and Misund, 1999). Range
contraction of some stocks has been extensively documented
(MacCall, 1990; Rose and Kulka, 1999) and is supported by ba-
sic models of habitat use (MacCall, 1990). Research surveys and
localized fisheries that only cover a small portion of the stock’s
range may be particularly vulnerable to this cause of change
in catchability. Walters (2003) described how hyperdepletion
could occur when a fishery is expanding spatially and is able
to initially target areas of high abundance. Density-dependent
effects may vary between different temporal scales (Rose and
Leggett, 1991; Atran and Loesch, 1995), spatial scales (Prince
and Hilborn, 1998), and degrees of data aggregation (Bannerot
and Austin, 1983). This same effect can also occur at a smaller
scale if a stock preferentially uses habitat that is not surveyed.

Table 3 Methods for describing patterns of time-varying catchability and including time-varying catchability in
assessment models

Equation number Method Function

Mechanistic

3.1 Density-dependent qt = αN
β
t

3.2 Density-dependent q = a
1+bN

3.3 Effort and density (derived from Cobbs-Douglas catch
equation)

CPUEt = αE
γ
t N

β
t

3.4 Density dependence and refugia qt = αN
β
t − c

3.5 Spatial data (R is spatial patchiness of effort; D is spatial
extent of fishing fleet of effort)

qt = α − βD qt = α − βR

3.6 Density dependence with refugia and catch rate saturation CPUE = p+qD
1+rD

if D > −p/q

CPUE = 0 if D ≤ −p/q

3.7 Environmental variables qt = f (Vt )
Descriptive

3.8 Step function of time

qt =

q1

q2

...
qn

for t < t1
for t1 ≤ t < t2

for tn ≤ t

3.9 Polynomial of time qt = β0 + β1t + β2t
2 + . . . + βnt

n

3.10 White noise (log-scale) qt = q̄eεt

3.11 Random walk (log-scale) qt+1 = qt e
εt

Models are separated into mechanistic (based on functional relationships) or descriptive (allow changes over time without
specifying mechanisms) categories.
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D
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A B

Proportional 

Range collapse 

Figure 2 Potential effects of a decrease in abundance on the density of a
stock. The upper panel indicates proportional change in density across the entire
range, and the lower panel indicates a contraction of the range with decreasing
abundance. Locations A and B indicate potential sites where catch-per-unit-
effort could be measured. The estimated change in relative abundance would be
different at each site, but the overall change for the whole stock is the same in
both cases. In the upper panel, the proportional change at sites A and B would
be equivalent. In the lower panel, site A would display hyperstability and site B
would display hyperdepletion.

For example, a species that preferentially uses rocky habitat
may exhibit density-dependent catchability in a trawl survey
that only covers areas with little structure (Swain et al., 1994).

Evidence of density-dependent catchability has been ob-
served in a wide range of fisheries, and many studies at-
tribute this pattern to the ability of fishermen to target dense
aggregations. The collapse of the north Atlantic cod (Gadus
morhua) fishery is partly attributed to a damped decrease
in CPUE as abundance fell (Hutchings and Myers, 1994;
Walters and Maguire, 1996; Shelton and Lilly, 2000), and
CPUE even increased in some locations as cod stocks declined
(Rose and Kulka, 1999). Density-dependent catchability has
been observed in the commercial purse seine fishery for At-
lantic menhaden, where catchability increased as abundance
decreased (Brevoortia tyrannus; Schaaf and Huntsman, 1972;
Schaaf, 1975, 1980). Peterman and Steer (1981) also found
that catchability in recreational fisheries for Chinook salmon
(Onchorynchus tschawytscha) increased with decreasing abun-
dance, and Harley et al. (2001) found hyperstable catchability in
a meta-analysis of International Council for Exploration of the

Sea (ICES) commercial fisheries. Bannerot and Austin (1983)
found hyperstable catchability in a recreational headboat fishery.
Fonteneau and Richard (2003) found evidence of hyperdeple-
tion in longline fisheries in the Indian Ocean.

Evidence of density-dependent catchability has also been
found in fishery-independent surveys that use active and pas-
sive gears. Godø et al. (1999) found that catchability of research
trawls for cod (Gadus morhua), haddock (Melanogrammus ae-
glefinis), and American plaice (Hippoglossoides platessoides)
tended to increase with density (hyperdepletion) because fish be-
havior upon encountering the net differs with fish density. Swain
et al. (1994) suggested that density-dependent catchability (hy-
perdepletion) in a fishery-independent trawl survey for Atlantic
cod was caused by changes in the spatial distribution of the stock
relative to the survey area, which could be caused by preferen-
tial use of untrawlable habitat at low abundance. Rodgers et al.
(2003) found that catchability of walleyes (Sander vitreus) was
hyperstable in electrofishing and fyke net surveys in northern
Wisconsin lakes, and McInerny and Cross (2000) found that
catchability of largemouth bass (Micropterus salmoides) in an
electrofishing survey was hyperstable. Gill net surveys for lake
trout (Salvelinus namaycush) in Lake Superior were also found
to exhibit hyperstable density-dependent catchability caused by
gear saturation (Hansen et al., 1998).

Several studies have tested the hypothesis that catchability is
density dependent, but were unable to reject the null hypothe-
sis. Beard et al. (1997), Hansen et al. (2000), and Newby et al.
(2000) failed to reject the null hypothesis that catch rates of
walleyes in a recreational angling fishery were proportional to
abundance, although Hansen et al. (2005) later found that catch-
ability of walleyes was density dependent in an analysis that
included measurement error in abundance estimates. Fournier
(1983) tested the hypothesis that fishery catchability was density
dependent in a stock assessment of Pacific cod (Gadus macro-
cephalus), but the analysis failed to reject the null hypothesis
that catchability was constant. Richards and Schnute (1986) and
Richards (1987) found that CPUE was proportional to density
for research angling for several rockfish (Sebastes spp.) species
individually, but not as a group.

Environment

Environmental change can affect fish and fisher behavior, and
thus affect catchability of fishery-dependent and -independent
indices of abundance. Changes in fish behavior may occur sea-
sonally or across years due to a variety of changing hormonal
and environmental cues or natural and artificial pressures. When
these changes affect feeding habits or fish densities, they can
cause seasonal or continuous changes in catchability (Skjold
et al., 1996; Soldmundsson et al., 2003). Oceanographic changes
or cycles may cause concentrations or dispersal of fish, as in the
Peruvian anchoveta fishery (Csirke, 1989; Hilborn and Walters,
1992). Reduced catchability of green tiger prawns (Panaeus
semisulcatus) is associated with low temperatures (Ye and
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INCORPORATING TIME-VARYING CATCHABILITY INTO POPULATION DYNAMIC STOCK ASSESSMENT MODELS 13

Mohammed, 1999), while catchability of purse-seines for tuna
decreases as depth of the thermocline increases (Green, 1967).
Evans et al. (1997) found that catchability of prawns (Panaeus
merguiensis) is affected by rainfall. Climate change scenarios
may cause trends in catchability through behavioral changes (Ye
and Mohammed, 1999) or changes in spatial distribution. These
types of changes may become particularly problematic for re-
search surveys if catchability of stocks of interest is affected by
global climate change.

Combinations of Factors

Because of the many potential causes of time-varying catch-
ability, multiple mechanisms will often act in a fishery, and
the overall effect will be difficult to predict a priori. For ex-
ample, catchability decreased overall for yellow perch (Perca
flavescens) in Lake Michigan in a recreational angling fish-
ery (Figure 3). This change in catchability was likely due to
combined effects of management, changes in abundance, and
changes in the environment. Ziegler et al. (2003) found that
catchability was influenced by physiological processes, water
temperature, and density-dependent (hyperstable) processes for
Tasmanian rock lobsters (Jasus edwardsii). Ye and Mohammed
(1999) found that catchability was associated with schooling
behavior, water temperature, and increased with abundance for
green tiger prawns. Patterson et al. (1993) found that catchabil-
ity was positively related with abundance and negatively with
sea surface temperature and sea surface level for chub mackerel
(Scomber japonicus).

Economic methods have been developed to estimate how
factors, such as catchability, stock abundance, and nominal fish-
ing effort, affect fishery production (Squires, 1992; Andersen
2005). In one such method, trends in catchability (commonly
called fishing efficiency) are estimated as trends in “total factor
productivity,” factors that affect output (i.e., catch) other than
inputs (i.e., effort). Studies using these methods have generally
demonstrated strong density dependence and increasing resid-
ual trends in catchability over time (Hannesson, 1983; Squires,
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Figure 3 Changes in catchability over time for recreational fisheries for yel-
low perch in Wisconsin and Illinois waters of southern Lake Michigan.

1992; Skjold, 1996; Hannesson, 2007). Total factor productivity
may in turn be decomposed as technical changes and efficiency
changes (Oliveira et al., 2009). Other multiple factor studies
have attempted to estimate trends in catchability using other
methods (Tingley et al., 2005). These studies link residuals in
CPUE (after compensating for density dependence and effort
dependence) to vessel-specific or fishery-wide factors. These
kinds of analyses may provide a useful avenue in the future for
estimating catchability changes due to a variety of management,
gear, technical, and environmental changes (Fare et al., 2006).

METHODS FOR INCORPORATING TIME-VARYING
CATCHABILITY

Methods have been developed to incorporate time-varying
catchability in stock assessment models, but there is little con-
sensus about the best practices in this area (e.g., Fox, 1974;
Fournier and Archibald, 1982; Fréon, 1988; Prager, 1994;
Schnute, 1994; Fournier et al., 1998; Shepherd and Pope, 2002;
Walters and Martell, 2004). Several general methods have been
developed to “correct” or standardize effort or CPUE data se-
ries for time-varying catchability or to allow catchability to vary
over time within an assessment model: (1) standardization of in-
dices of abundance, (2) ignoring or down-weighting an index
if its catchability is suspected to have changed (NRC, 1998;
Francis et al., 2003), (3) modeling catchability as a function
of time (e.g., Prager, 1994; Shepherd and Pope, 2002; Walters
and Martell, 2004), (4) modeling catchability as a function of
density or an environmental variable (e.g., Fox, 1974; Fournier,
1983; Fréon, 1988; Shepherd, 1999), or (5) allowing catchabil-
ity to change over time using state space models (e.g., Sullivan,
1992; Gudmundson, 1994; Schnute, 1994). State space tech-
niques and modeling catchability as a function of time do not
ascribe causation for changes in catchability, while use of func-
tions of density or external variables assumes that the variables
used to describe changes are the dominant ones. Here, we focus
on methods that could be applied in surplus production mod-
els (Prager, 1994), virtual population analysis (VPA) (Shepherd
and Pope, 2002), and statistical catch-at-age analysis (SCA)
(Fournier and Archibald, 1982; Deriso et al., 1985; Schnute,
1994), although these methods are generally applicable in pop-
ulation dynamics stock assessment models that are statistically
fitted.

Standardizing CPUE

Traditionally, standardization of CPUE has been the primary
method used to attempt to account for time-varying catchability.
Standardizing effort data has a long history in fisheries where
fishery effort is adjusted for spatial and temporal patterns, fish-
ery effort or CPUE is adjusted for known changes in fishing
efficiency, or effort in other gears is converted to a standard gear
in which catchability is not thought to have changed (Beverton
and Holt, 1957; Gulland, 1964; Ricker, 1975; Gulland, 1983).
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14 M. J. WILBERG ET AL.

Improvements in vessels, and other fisher behaviors can be ac-
counted for either by analyzing CPUE data to estimate mean
CPUE by accounting for vessel characteristics and spatial and
temporal patterns of fishing (Gavaris, 1980; Lo et al., 1992;
Maunder and Starr, 2003; Maunder and Punt, 2004) or by in-
tegrating the standardization process into the stock assessment
model (e.g., Maunder, 2001).

Most current single-species assessments attempt to address
changes in catchability by “standardizing” CPUE data to mini-
mize changes that might affect catchability, such as fisher target-
ing, effort changes, and technological changes. Many methods
and models have been developed to standardize CPUE data for
known changes in times and locations fished and vessel char-
acteristics, although most applications do not evaluate potential
interactions with year effects, which complicates interpretation
of indices. Models used include general linear models (Gavaris,
1980), generalized linear models, mixed models, and gener-
alized additive models (Maunder and Punt, 2004). However,
standardization can only correct for measured factors that affect
catchability and require that data are available for each factor.
Thus, changes in catchability caused by technological changes
in the recreational fishery such as adoption of GPS or sonar
and increases in boat length are rarely able to be well described
(Squires, 1992).

Additional information, such as stock range area, spatial
concentration of effort, and spatial patchiness of effort, have
been suggested as covariates in CPUE standardization models to
compensate for density dependence or effort dependence (Win-
ters and Wheeler, 1985; Salthaug and Aanes, 2003). Swain and
Sinclair (1994) suggest that a ninety-five percent coverage area
is the optimal spatial metric for stock range area in such uses.
Salthaug and Aanes (2003) suggested using a linear relationship
between catchability and spatial concentration of effort to cor-
rect CPUE for changes in the spatial distribution of fishing effort.
Bannerot and Austin (1983) suggested using a transformation
of the proportion of zero catches as an index of abundance for a
headboat fishery. Stephens and MacCall (2004) proposed using
multi-species logbook data to determine which sets occurred
within likely habitat for a species of interest.

While standardization techniques are useful and should be
used to correct for known factors affecting catchability, it is
unlikely that all the factors that affect catchability can be in-
cluded in the standardization. Although some gear and regula-
tory changes may be controlled for during index standardization
(Maunder and Punt, 2004), other significant changes may not be
recorded in surveys that track changes in fishing gears (Marchall
et al., 2007). Therefore, methods to incorporate time-varying
catchability in assessment models are often still necessary even
when indices have been standardized.

Ignoring CPUE Time Series and Assigning Arbitrary Weights

Choosing among CPUE time series to include in an assess-
ment model can be difficult. In general, fishery-independent in-

dices are often thought to better reflect relative abundance than
fishery-dependent indices (NRC, 1998). When good fishery-
independent indices are available, use of fishery-dependent in-
dices with their potential problems of time-varying catchability
is not necessary. Indeed, based on the results of their simu-
lations, the NRC (1998) recommended that fishery-dependent
indices of abundance should be ignored if a fishery-independent
index of abundance is available, although many assessments
use both fishery-dependent and -independent data if they are
available (e.g., Millar and Methot, 2002; Francis et al., 2003;
Wilberg et al., 2005). However, fishery-dependent indices may
have some benefits over fishery-independent indices because
longer time series are often available and they often cover a
larger area of the stock than fishery-independent surveys. Sim-
ulation studies suggest that using fishery-dependent indices in
a stock assessment can improve accuracy of estimates if meth-
ods that allow for time-varying catchability are used (Wilberg
and Bence, 2006). Ignoring potential indices of abundance re-
quires that more than one index of abundance is available and
assumes that problems caused by including an index outweigh
the potential benefits.

Assigning arbitrary weights to each index is commonly done
when multiple indices of abundance are included in a stock
assessment (Francis et al., 2003). Often stock assessment scien-
tists will substantially “down-weight” (i.e., specify an arbitrarily
large standard deviation) fishery-dependent CPUE data in an as-
sessment model if a fishery-independent index of abundance is
available for a given stock (Francis et al., 2003). This implies
that the variance of some indices is specified as larger than
other data sources. However, the problem with trending catcha-
bility is that errors will be correlated over time and will violate
the assumption of independence that is commonly used in as-
sessment models. Therefore, down-weighting indices will often
still produce problems that show up as trends in the residuals of
fits to some indices of abundance and retrospective patterns in
assessment results.

Functions of Density or Environmental Variables

Some researchers have developed methods to explicitly in-
clude density-dependent catchability and effects of the environ-
ment on catchability in stock assessments (Fox, 1974; Cooke,
1985; Fournier, 1983; Fréon, 1988; Shepherd, 1999; Maunder
and Watters, 2003; Chen et al., 2008). The power model used
to incorporate density-dependent catchability (Eq. 3.1) into as-
sessments was developed by Paloheimo and Dickie (1964). Al-
though density-dependent catchability has been applied in as-
sessment models in a range of fisheries since the mid 1970s (e.g.,
MacCall, 1976; Fournier, 1983; Chen et al., 2008), density-
dependent catchability does not seem to be commonly incor-
porated into stock assessments that provide management ad-
vice. Other functions for density-dependent catchability are also
available (Eqs. 3.2–3.5), but we were unable to find examples
of these being used in stock assessments.
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INCORPORATING TIME-VARYING CATCHABILITY INTO POPULATION DYNAMIC STOCK ASSESSMENT MODELS 15

Methods to allow effects of the environment on catchability
(Eq. 3.6) have also been developed (Fréon, 1988; Methot, 2000;
Maunder and Watters, 2003). Fréon (1988) developed a suite of
20 surplus production models that allow for environmental and
density-dependent effects on stock productivity and catchability.
Maunder and Watters (2003) provided a general framework for
allowing parameters to be a function of environmental variables
in an SCA. Stockhausen et al. (2006) included the effect of
mean bottom temperature on trawl survey catchability in an
SCA of flathead sole (Hippoglossoides elassodon). Swain et al.
(2000) attempted to include bottom temperature in a VPA for
Atlantic cod in the southern Gulf of St. Lawrence. They found
that the addition of bottom temperature did not improve the fit
of the model and suggested that only environmental variables
that explain residual variation in the assessment model be used.

Functions of Time

Many authors have suggested attempting to model catchabil-
ity as a step function (Eq. 3.7) or a polynomial of time (Eq. 3.8;
Prager, 1994; Shepherd and Pope, 2002; Walters and Martell,
2004). The parameters of the function are then estimated dur-
ing the model fitting. Other functions of time, such as cubic
splines, could be used to model time-varying parameters (Wal-
ters and Martell, 2004), but we were unable to find examples in
which this technique was applied. Therefore, we only discuss
step functions and polynomials.

Step functions require that time blocks are specified, and sep-
arate catchability parameters are estimated for each block. There
is a tradeoff between the number of blocks and the estimability
of parameters; the longest blocks possible are most desirable
in terms of parsimony, but longer blocks limit the amount of
change in catchability. If enough blocks are used, this will allow
substantial variability in catchability over time, but it may be
difficult to estimate parameters for time blocks shorter than five
years. As the block size decreases to the length of the time step
in the model, this method becomes like estimating a separate
catchability for each year (i.e., ignoring CPUE data).

Identifying appropriate blocks of time is often a somewhat
arbitrary process. Ideally, blocks should be determined by dom-
inant changes in the fishery or survey that are thought to change
catchability. Examples of this could be a substantial change in
regulations, such as a seasonal closure when seasonal patterns
in catchability exist, or changes made to a survey gear or vessel.
In principle, time blocks need not be linked to a specific cause
of time-varying catchability. Mohn (1999) found that blocks
of time could be used in VPAs to reduce retrospective bias.
However, despite causing reductions in retrospective patterns,
estimates were often still biased, suggesting that fishery biolo-
gists should not base the choice of time blocks on reduction of
retrospective pattern alone.

Step functions have been commonly used to model changes
in catchability. Prager (1994) suggested using a step function for
surplus production models. Simpendorfer et al. (2000) estimated

catchability for two periods for their assessment of whiskery
shark (Furgaleus macki) in southwestern Australia because of a
change in target species of the fishery during the time series in an
age-structured production model. McAllister and Ianelli (1997)
estimated catchability for two periods because of changes in
survey gear for yellowfin sole (Limanda aspera) in the eastern
Bering Sea.

Polynomials of time have been suggested as a general method
to allow parameters of assessment models to vary over time
(Walters and Martell, 2004). Many authors have suggested mod-
eling catchability as a linear increase and estimating the param-
eters during model fitting (Prager, 1994; Shepherd and Pope,
2002), but few assessments seem to apply this technique (e.g.,
Marchal et al., 2003). Polynomials of higher order could also
be used, but we were unable to find any examples of these.
However, quadratic functions of time were used in a similar
application to model parameters of a function for time-varying
selectivity for lake whitefish (Coregonus clupeaformis) stock
assessments in the Great Lakes (Ebener et al., 2005). A poten-
tial difficulty with polynomials of time is that the shapes de-
scribed by lower order polynomials may not be flexible enough
to adequately model time-varying catchability. High order poly-
nomials may have too many parameters to estimate, and even
short projections may be quite poor.

State Space Methods

State space techniques have been developed and applied
in surplus production models (Meyer and Millar, 1999; Punt,
2003), VPAs (Porch, 1999), and SCAs (Gudmundsson, 1994;
Schnute, 1994; Fournier et al., 1998) . This is a general approach
that allows parameters to vary over time, often without speci-
fying the cause of variation. A state space approach explicitly
includes process and observation error in the model (Schnute,
1994). These models usually consist of a state vector, an obser-
vation vector, and a control vector. State space models explicitly
model the system dynamics as a function of the state vector and
the controls, which do not depend on the states. Observations
are modeled as a function of the unknown state vector. If mod-
els are linear and errors are normal, a Kalman filter can be used
to estimate the parameters (e.g., Sullivan, 1992). For nonlinear
models, maximum penalized likelihood (i.e., highest posterior
density or maximum a posteriori) and Bayesian methods are
commonly used to estimate parameters (Schnute, 1994), but
other methods are also available (Punt, 2003).

Several methods are commonly used to allow catchabil-
ity to change over time in a state space framework, although
many state space assessments assume constant catchability (e.g.,
Millar and Meyer, 2000). Most state space stock assessment
models with time-varying catchability assume multiplicative
independent lognormally distributed errors in catchability (Eq.
3.9; white noise; Fournier and Archibald, 1982; Butterworth
et al., 2003). This is equivalent to assuming additive indepen-
dent normally distributed errors on the log scale. The error
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variance of catchability is often not easily estimable and other
information, such as the ratio of observation to process error
(Schnute and Richards, 1995), must be specified. In practice,
the variance of the catchability deviations is often specified by
the analyst (e.g., Fournier and Archibald, 1982).

Often the variance of the index of abundance in the assess-
ment model is specified as the estimated variance of CPUE. This
assumes that the only error is the error in measuring CPUE and
that if CPUE was measured exactly, it would be proportional to
abundance. This is generally not a good idea because the esti-
mated variance of CPUE will be a lower bound on the possible
variance for the index of abundance because it only accounts for
the precision of CPUE. The other potential component of error
is variation in catchability. Catchability variation would be in
addition to precision of CPUE.

Random walks have also been used to model gradual changes
in catchability over time (Eq. 3.10). Modeling catchability as a
random walk has been widely applied in SCAs (e.g., Fournier
et al., 1998; Wilberg et al., 2005), rarely applied in VPAs (e.g.,
Porch, 1999), or during index standardization (Stockhausen and
Fogarty, 2007), and has only been suggested for surplus pro-
duction models (Smith and Addison, 2003). Many causes of
time-varying catchability could lead to gradual changes over
time. When random walks are implemented for catchability,
the log of catchability is usually the estimated parameter, so
that catchability cannot become negative to stabilize estimation
procedures, and the variance of the log of catchability is often
specified.

Priors and Variance Components of Time-Varying
Catchability

For nonlinear models, maximum penalized likelihood (i.e.,
highest posterior density) and Bayesian methods are commonly
used to estimate parameters (Schnute, 1994). The Bayesian ap-
proach utilizes Bayes Theorem to obtain the posterior density
of the parameter values:

p(θ |y) ∝ p(θ )p(y|θ),

where p (θ |y ) is the posterior density of the parameters θ given
data y, p (θ ) is the prior density of the parameters θ , and p (y |θ )
is the likelihood of the data y given parameters θ (Gelman et al.,
2004). The likelihood represents the fit of the model to the data
for the fish stock of interest (Punt and Hilborn, 1997). The prior
density represents information inferred from other stocks or
species (Punt and Hilborn, 1997), and is analogous to specifying
parameter bounds or applying penalty terms to the likelihood
function in maximum penalized likelihood estimation.

There are generally two types of priors: non-informative and
informative. Non-informative priors provide relatively little in-
formation compared to the observed data. Informative priors
are constructed from other sources of data (e.g., data from other
stocks) and can strongly influence model results. Punt et al.
(1994) were able to build an informative lognormal prior for

the catchability parameter of an acoustic survey. As is more
commonly the case, catchability is assigned a noninformative
prior because it is not a quantity that can be directly measured.
Punt and Hilborn (1997) recommend setting a noninformative
uniform prior from 0 to ∞ for log-scale catchability, although
this would be an improper prior (i.e., the prior density will not
sum to one). For state space methods of estimating time-varying
catchability, priors or penalty terms must be assigned to the an-
nual process error deviations in catchability (εt in Eqs. 3.10 and
3.11). Generally, these process error deviations are assumed to
be normally (Schnute, 1994; Butterworth et al., 2003) or log-
normally (Wilberg and Bence, 2006) distributed in white noise
and random walk methods.

Regardless of whether full Bayesian or maximum penalized
likelihood methods are used, one critical issue that remains un-
resolved for state space approaches is how to determine the
variance for the process error deviations. Observation error of
CPUE should generally be estimable from the study design and
data, but there is no information in the CPUE data on the vari-
ance of the process error (Maunder, 2001; Linton and Bence,
2008). In Bayesian state-space models, observation and process
error variances can be estimated as parameters by placing priors
on them (e.g., Millar and Meyer, 2000). The variance of the
process error deviations is usually difficult to estimate without
substantial prior information (Linton and Bence, 2008). Typi-
cally, in state-space stock assessment models it is necessary to at
least specify the ratio of the variances of observation to process
error (Schnute and Richards, 1995). An alternative is to specify
the variance of process error and allow the model to estimate
the variance of observation error, which is also commonly done.
However, these methods can lead to overly precise model es-
timates because they assume that the process error variance or
the ratio of the variances is known (Maunder, 2001). Based on a
simulation study of variance estimation methods in SCA mod-
els, Linton and Bence (2008) recommend using a Bayesian ap-
proach to estimate the process and observation error variances.
Lewy and Nielsen (2003) attempted to model catchability as a
random walk in a Bayesian SCA model, but they determined
the model was over-specified (i.e., they were unable to obtain
stable estimates of the process error variance for catchability).

Information from other species within a multispecies com-
plex may be useful for estimating a catchability trend for
a species of interest. Given the similarities in environmental
and biological effects, technological changes, and management
changes that simultaneously affect many species in a shared
area, changes in catchability may be similar for multiple species
within a complex. Approaching estimation of changes in catch-
ability over time as a shared phenomenon may improve the
precision of single-species assessments by allowing estimates
of catchability to include information on stocks that should have
similar patterns of catchability. Although there are other factors
that are not shared among species within a complex, dominant
factors may be accounted for by using information from related
fisheries. For example, relative price may account for changes
in relative effort and fisher targeting, while density dependence
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could control for range expansions and contractions as well as
changes in distribution. This method could probably best be
used as a prior on the trend in catchability instead of an estimate
of the absolute value of catchability.

Expert opinion is sometimes the only source of informa-
tion available for specifying priors on time-varying catchability
parameters. Merritt and Quinn (2000) demonstrate how the per-
ceptions of fishery managers can be used to weight different data
sources in an assessment model. Setting these weights is essen-
tially the same as specifying the process and observation error
variances associated with each data source. The ParFish ap-
proach provides a methodology for using information obtained
from interviews of fishermen to set priors on model parameters
in Bayesian-based stock assessments (Walmsley et al., 2005).
Priors based on expert opinion are more easily evaluated and
defended when constructed using a formal methodology, such
as those described above.

Combinations of Methods

Any of the above methods can be combined using a state
space approach. For example, step functions could be com-
bined with random walks to allow for large known changes in
catchability at specific times and gradual changes at other times.
Additionally, the parameters of a density-dependent catchability
relationship could be allowed to vary over time (Fournier, 1983).
Ianelli and Fournier (1998) used a combination of a random walk
and white noise model for catchability in an SCA (NRC, 1998).
Although the implementation of state-space models described
above does not include causal mechanisms for change over time,
causal mechanisms can be included in state space models (e.g.,
Fournier, 1983; Methot, 2000). However, combinations of meth-
ods produce more complicated models, and the data may not be
informative enough to estimate all of the parameters without
auxiliary information or informative priors.

A combination of methods can be used for different indices
of abundance within the same assessment. Wilberg et al. (2005)
used a Bayesian state-space framework to allow fishery catch-
ability to change over time using random walks, but assumed
constant catchability for fishery-independent surveys. This ap-
proach can allow the analyst to tailor the assessment model to
the specific characteristics of data availability for a given stock.

COMPARISONS OF METHODS

Results can differ substantially among models that make
different assumptions about time-varying catchability (Pope and
Shepherd, 1985; Wilberg and Bence, 2006). Nearly all methods
outlined have been applied in the three types of assessment
models included in this review. However, there has been little
formal evaluation of alternative methods for incorporating time-
varying catchability in assessment models (NRC, 1998). This
lack of evaluation of alternative models has also extended to the

amount of information necessary to estimate parameters of a
time-varying catchability model. For some data sets, catchability
and abundance will be too confounded to estimate both. For
models that only include a single index of abundance, such as
many surplus production models, this is likely to happen with
one way trip data, where the index of abundance and catch show
a monotonous increase or decrease. For age-structured models it
is less clear when estimation will fail. Conflicts in trends among
abundance indices can also cause assessment models to fail to
produce reliable estimates.

A related problem is that while overall time-varying catch-
ability is estimable in many assessments, its components, such
as availability and retention, are not estimable without auxiliary
information. Additionally, changes in age- or length-based pat-
terns in catchability (i.e., selectivity) may also be confounded
with changes in overall catchability, which can pose problems
for models that include a separability assumption (i.e., fishing
mortality for a given age or length is the product of overall catch-
ability and an age- or length-specific selectivity pattern (Quinn
and Deriso, 1999)). Thus, it can be difficult to determine why
catchability is changing over time.

Several studies have compared performance of different
methods for fitting (or tuning) VPAs when catchability varies
over time. Pope and Shepherd (1985) found that VPA meth-
ods that assume constant catchability work well if catchability
does not change over time, but can provide severely biased esti-
mates if catchability changes systematically over time. Patterson
and Kirkwood (1995) also found that the ADAPT and Laurec-
Shepherd VPA methodologies that assumed constant catchabil-
ity produced biased estimates of spawning stock biomass and
total allowable catch when catchability increased over time, but
the ADAPT method produced less biased estimates. Pope and
Shepherd (1985) suggest that methods that allow for systematic
changes in catchability are most robust to trends in catchabil-
ity over time than methods that do not. However, they warn
that estimating time-varying catchability could lead to estima-
tion problems. Marchal et al. (2003) applied extended survivors
analysis (XSA) models with and without an estimated linear
increase in catchability over time to data from four stocks in the
North Sea. They found that assessment models that allowed in-
creasing catchability had less residual pattern, smaller standard
errors, and less retrospective pattern than models with constant
catchability for three of the stocks.

Wilberg and Bence (2006) evaluated four methods for allow-
ing catchability to vary over time in SCAs: ignoring fishery-
dependent CPUE, density-dependent catchability, white noise,
and random walk. All of the estimation methods, except for
density dependent catchability, were able to estimate time-
varying catchability and abundance in more than 99% of the
simulations attempted. For the density-dependent model, the
parameters of the density-dependent relationship were con-
founded when density dependence was not present. They found
that the best method to incorporate time-varying catchabil-
ity depends on how catchability varies over time and the
amount of observation error in the CPUE time series. Including
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fishery-dependent CPUE data in the estimation model and al-
lowing catchability to follow a random walk provided the best
(or nearly best) estimates of biomass in the last year in most
cases (Wilberg and Bence, 2006). The estimation model that ig-
nored fishery-dependent CPUE data performed well when good
(coefficient of variation = 25%) fishery-independent survey data
were available, but performance degraded as survey precision
decreased. The white noise estimation model performed well
when catchability did not trend over time, but produced sub-
stantially biased estimates when catchability trended over time.
The density-dependent catchability estimator performed poorly
when catchability was not actually density dependent. They rec-
ommended that the random walk method should be used as a
starting point for SCAs. Likewise, Labelle (2005) found that
modeling catchability as a random walk performed well under a
variety of conditions including an increasing trend in catchabil-
ity in a simulation study of the MULTIFAN-CL model (Fournier
et al., 1998).

CHOOSING AMONG METHODS

The best method to model time-varying catchability may be
estimated using model selection methods (e.g., Burnham and
Anderson, 2002; Spiegelhalter et al., 2002). If models only
differ in their fixed effects, then Akaike’s Information Crite-
rion (AIC) can be easily applied to determine evidence in fa-
vor of one model over another (Akaike, 1973; Burnham and
Anderson, 2002). This could be useful for comparing among
models with a constant catchability, time blocks of different
lengths, polynomials of time, density-dependent catchability, or
functions of environmental variables. Additionally, likelihood
ratio tests could be used for some comparisons (e.g., Fournier,
1983; Prager, 1994), but the standard methodology only applies
to nested models.

A potential detraction of using state space methods to in-
corporate time-varying catchability is that most standard model
selection methods, such as likelihood ratio tests or AIC, are not
easy to implement in nonlinear models that differ in their ran-
dom effects (Burnham and Anderson, 2002). Because of these
complications, Wilberg and Bence (2008) explored using de-
viance information criterion (DIC; Spiegelhalter et al., 2002) to
select the best model when state space models were included
in the model set. They found that DIC was generally able to
select the assessment model that was most similar to the data-
generating model, but this did not lead to a general improve-
ment in the accuracy of estimates of biomass or fishing mortality
in the last year of the assessment. Bayes factors (e.g., McAl-
lister and Kirchner, 2002) or Bayesian model averaging (e.g.,
Patterson, 1999; Hammond and O’Brien, 2001) may also be
useful options for comparing models when they differ in their
random effects.

Often, studies of model selection rely on very similar models
for data generation and estimation. This may lead to non-robust
conclusions about how well these methods will perform in the

real world (Prager, 2002). For example, Prager (2002) found that
the presence of outliers caused likelihood ratio tests to select a
more complicated surplus production model even though the
data were generated from a simpler logistic production model.
However, simulation studies are the only feasible way to con-
duct wide-scale testing of these methods. Evaluations of model
selection methods should include a wide range of data gener-
ating scenarios, and effectiveness of model selection methods
should be compared on multiple scales, such as ability to choose
the “correct” structural model and ability to choose the model
that makes the most accurate predictions.

SUMMARY AND RECOMMENDATIONS

Time-varying catchability is a common feature of many fish-
eries. More importantly, trends in catchability also seem to
be common, which can lead to biased results from stock as-
sessment models and biased management advice (Pope and
Shepherd, 1985; Patterson and Kirkwood, 1995; Wilberg and
Bence, 2006). To account as well as is possible for the many
known causes of time-varying catchability, CPUE should be
standardized for known factors that affect catchability, while
recognizing that it will be difficult to correct for all potential
causes. Therefore, assessment methods that incorporate time-
varying catchability should be used when conducting stock as-
sessments even if CPUE has been standardized unless com-
pelling reasons to assume constant catchability are advanced.
Descriptive methods, such as random walks, may produce more
accurate estimates than methods that use functional relation-
ships of catchability with other variables if major factors af-
fecting catchability are excluded (Wilberg and Bence, 2006).
However, methods that imply commonly occurring functional
relationships, such as density-dependent catchability, have many
studies from which to derive priors or constraints on parame-
ters and may provide parsimonious descriptions of catchability
changes over time. Therefore, multiple methods that apply a
range of assumptions about time-varying catchability should
be attempted. If time only permits one method and sufficient
data are available, random walks appear to perform well un-
der a wide variety of conditions (Wilberg and Bence, 2006). If
data are lacking such that these methods cannot be applied, and
density-dependent catchability is suspected, functional relation-
ships between density and catchability could be used.

Fishery-Independent Indices of Abundance

Fishery-independent indices of abundance are often among
the most important components of a stock assessment. Sur-
veys that use a standardized design and cover the full potential
range of the stock will be least prone to time-varying catcha-
bility. Under these conditions, constant catchability should be
assumed. However, some studies have suggested that even these
types of surveys may still be affected by density-dependent
catchability, which may be caused by density-dependent
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changes in fish behavior (Godø et al., 1999) or gear satura-
tion (Rodgers et al., 2003). In addition, if systemic changes in
environmental conditions occur as is expected in many regions
under climate change scenarios, time-varying catchability in re-
search surveys may become more common. Thus, sensitivity
analyses that allow catchability to vary over time may be useful
to test for evidence of time-varying catchability.

Changes in survey methods or vessels over time are fairly
common features of many research programs. If survey meth-
ods have changed and standardization has not been conducted,
catchability should be estimated separately for each period,
which can be accomplished using a step function. Standard-
ization studies can be used to correct for changes in catchability
prior to inclusion in an assessment or to develop a prior on the
amount of change from one period to the next.

Surveys that do not cover the whole range of the stock are
common. However, including such surveys in a stock assessment
can be problematic because they may only be an index of local
density rather than abundance of the whole stock. Methods to
allow catchability to vary over time can be used to include these
data in stock assessments in a fashion that recognizes their
limitations.

Fishery-Dependent Indices of Abundance

Fishery-dependent indices of abundance are commonly used
in stock assessments and are often the only available source of
information on relative changes in population size. Yet, fishery-
dependent indices of abundance are more likely to be affected by
time-varying catchability than fishery-independent indices be-
cause fisheries often target specific stocks and change gears and
methods over time. Some have suggested that fishery-dependent
indices of abundance should not be used if fishery-independent
indices are available (NRC, 1998). Wilberg and Bence (2006)
found that ignoring fishery-dependent indices of abundance only
worked well when the fishery-independent index of abundance
was fairly precise. Including fishery-dependent indices of abun-
dance in an assessment that allows catchability to vary over
time can produce more accurate abundance estimates than sim-
ply ignoring fishery-dependent indices. To account as well as is
possible for the many known causes of time-varying catchabil-
ity in fishery-dependent indices, CPUE should be standardized,
and methods that allow time-varying catchability can be used to
include these data in stock assessments in a manner that recog-
nizes their inherent limitations, as in the case of surveys that do
not cover the whole range of the stock.

Additional Data Collection

Collecting additional data may help in determining whether
time-varying catchability is occurring for a given stock. To assist
in CPUE standardization, collection of data that allows better
characterization of fishing effort, such as fishing location and
fishing technology used, should allow improved standardization

of fishery CPUE. For some fisheries with vessel monitoring sys-
tems this should be relatively easy to obtain. For others, such as
recreational fisheries, it could be very difficult to obtain because
of the number of participants in the fishery and their often wide
spatial and temporal distribution. Martell and Walters (2002)
suggested that directly estimating exploitation rate and catcha-
bility could be done with fairly modest mark-recapture studies in
some fisheries. Mark-recapture data can also be integrated with
other kinds of assessments fairly easily (e.g., Coggins et al.,
2006), which could provide additional information to detect
changes in catchability. Data on other aspects of fish population
and fisheries, such as range of the stock and spatial distribution
of fishing, may be useful to determine stock status and whether
catchability has changed, and Walters and Martell (2004) have
recommended that these be routinely evaluated.

Use in Management Strategy Evaluation (MSE) and
Stock Projections

MSEs are becoming widely used to compare and choose
procedures for managing a fishery. These studies rely on devel-
opment of one or several “operating models” that simulate the
underlying population dynamics, fishery, data collection, stock
assessment, and management (Butterworth, 2007). The devel-
opment of the operating model often relies on existing stock
assessments to inform parameter values and processes for in-
clusion (Butterworth, 2007). The methods outlined in this article
can provide base models that can be used in MSE. However, the
descriptive methods, particularly the random walk and poly-
nomial methods, may cause problems for simulating data sets
because they can potentially drift to positive or negative infin-
ity. Thus, assessment models that use functional relationships
may be useful for parameterizing MSE operating models. First
order autoregressive processes could potentially be used instead
of a random walk model to represent similar dynamics while
maintaining a stationary mean.

Stock projections are often conducted to evaluate fishery re-
sponses to alternative management proposals (Hilborn and Wal-
ters, 1992). Similar to the construction of operating models for
MSE, stock projection requires alternative assumptions regard-
ing future changes in catchability when policies that consider
effort management or use of CPUE in harvest determination are
evaluated. The projection of future changes in catchability can
be accomplished using the first order autoregressive processes
or functional forms for catchability, and prior studies may be
used to formulate likely hypotheses. For short-term projections,
it may be reasonable to assume catchability is constant at the
value of the last year or an average over the last several years.

Research Recommendations

More studies are needed to compare the performance of
the different methods for including time-varying catchability
in assessment models and to test methods for selecting among
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models. A particularly important component is understanding
when time-varying catchability is estimable in situations where
data are limited because highly parameterized state-space mod-
els may not perform well under these conditions. Research on
performance of time-varying catchability methods is needed for
simpler stock assessment models because most studies on per-
formance have only used age-structured models. Few studies
have attempted to develop or evaluate methods to objectively
decide among competing stock assessment models. Given the
number of potential methods that could be applied, development
of reliable techniques for deciding among multiple techniques
is needed.
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